Controlling resist thickness and etch depth for fabrication of 3D structures in electron-beam grayscale lithography

نویسندگان

  • J. Kim
  • D. C. Joy
  • S.-Y. Lee
چکیده

In many applications such as optoelectronic devices, three-dimensional (3D) structures are required. Examples include photonic band gap (PBG) crystals, diffractive optical elements, blazed gratings, MEMS, NEMS, etc. It is known that the performance characteristics of such structures are highly sensitive to their dimensional fidelity. Therefore, it is essential to have a fabrication process by which such 3D structures can be realized with high dimensional accuracy. In this paper, practical methods to control thickness of the remaining resist and etch depth, which may be employed for fabrication of such 3D structures using grayscale electron-beam lithography, are described. Through experiments, explicit control of the remaining resist thickness and etch depth at the resolution of 20 nm for the feature sizes of 0.5 lm and 1 lm has been successfully demonstrated. Also, the 1:1 ratio of silicon to resist etching rates was achieved for transferring the remaining resist profile onto the silicon substrate. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Microfabrication Using Emulsion Mask Grayscale Photolithography Technique

Recently, the rapid development of technology such as biochips, microfluidic, micro-optical devices and micro-electromechanical-systems (MEMS) demands the capability to create complex design of three-dimensional (3D) microstructures. In order to create 3D microstructures, the traditional photolithography process often requires multiple photomasks to form 3D pattern from several stacked photores...

متن کامل

Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching

Micromachining arbitrary 3D silicon structures for micro-electromechanical systems can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we have investigated the use of deep reactive ion etching (DRIE) and the tailoring of etch selectivity for precise fabrication. Silicon loading, the introduction of an O2 step, wafer electrode power, and wafer temp...

متن کامل

Fabrication of photonic band-gap crystals

We describe the fabrication of three-dimensional photonic crystals using a reproducible and reliable procedure consisting of electron beam lithography followed by a sequence of dry etching steps. Careful fabrication has enabled us to define photonic crystals with 280 nm holes defined with 350 nm center to center spacings in GaAsP and GaAs epilayers. We construct these photonic crystals by trans...

متن کامل

Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon.

In this work, we introduce a maskless, resist-free rapid prototyping method to fabricate three-dimensional structures using electron beam induced deposition (EBID) of amorphous carbon (aC) from a residual hydrocarbon precursor in combination with metal-assisted chemical etching (MaCE) of silicon. We demonstrate that EBID-made patterned aC coating, with thickness of even a few nanometers, acts a...

متن کامل

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007